Understand the bearing capacity of soil.

3.1 Define the bearing capacity of soil.
3.2 Explain the ultimate bearing capacity of soil.
3.3 Mention the Tarzaghi' s bearing capacity factors.
3.4 Express the equations for determination of 3.5 ultimate bearing capacity of soil for square and circular footing. 3.6Calculate the ultimate bearing capacity of sandy soil.
3.7 Explain the allowable bearing capacity of clay.
3.8 Explain the allowable bearing capacity of sand.
3.9 Describe the method of plate bearing test.
3.10 Calculate the allowable bearing capacity of soil. 3.11 Explain the methods for improving bearing capacity of soil.

HOUNDATION ENGINDERING

BEARING CAPACITY
 OF SHALLOW
 FOUNDATIONS

DEFTINIIION OF SOIL

Soil is a mixture of irregularly shaped mineral particles of various sizes containing voids between particles. The particles are a by-product of mechanical and chemical weathering of rock and described as gravels, sands, silts, and clays..

Any manmade structure should, one way or another, rest and/or transmit its load to the underlying soil

BEARING CAPACIIY OF SOILS

Bearing capacity is the ability of soil to safely carry the pressure placed on the soil from any engineered structure without undergoing a shear failure with accompanying large settlements.

Therefore, settement analysis should generally be performed since most structures are sensitive to excessive settlement.

Bearing Capacity of Shallow

Fowndations

- Soil Bearing Capacity is Controlled by:
- Bearing Capacity Analysis:
» Terzaghi's Theory (1943), based on Prandtt theory (1920).
» General B.C. Equation.
- Settlement Analysis:
» Immediate Settlement
» Consolidation Settlement

Shallow Foundations

11 T 1 1 1 Mat or Raft
(b)

Foundations
 Deep

Belled Pler

A11 A1

Failure Modes for Shallow Fowndations ©

Original surface of soil
-

General Shear Failure,
Zones I, II, III, Dense Sand
(a)

Original surface

Local Shear Failure, Zones I, II,
Medium Dense Sand

Failure Mrodes, Continued

Original surface

Punching Failure, Zone I Only, Loose Sand and Soft Clay

Terzaghi's Asswmptions

(a)

Zone I, Alative. Zones II, Trarnsition.

Zones III, Passive.

Terzaghi B/C Ansumptions:

Whree zones do exist:
1- Acive zon:s just below the fowndation.
2- Trunsifion zons, between the active and passive zoness 3- Pussive zons, near the ground surface, just beside the fowndation.

Terzaghi Bearing Equation for

Stritp Footing

$$
q_{u \text { net }}=c N_{c}+\gamma_{1} D\left(N_{q}-1\right)+c
$$

Terzarlit Bearing Equation

$q_{u / t}=$

$q_{\text {ult }}=c N_{c}$ Cohesion Term
$q_{\text {ult }}=c N_{c}+v_{1} D N_{q}$ Above F. L. $q_{u l t}=c N_{c}+\gamma_{1} D N_{q}+0.5 B \gamma_{2} N_{v}$ Below F.L.

Terzaghi Bearing Equation

N_{c}, N_{q}, N_{γ} are Terzaghi B/C Coefficients, $f(\phi)$
C, ϕ) are the soil shear strength parameters

Bearing Capacity Factors

$q_{u l t}=c\left(N_{c}\right) \neq \gamma_{1} D\left(N_{q}\right) \neq 0.5 B \gamma_{2}\left(N_{v}\right.$

Terzashi Bearing Eluation

(

-

.

$-$
\qquad
\qquad

\qquad

\qquad

$+1-1+1$

Foundation Shape Factors

$q_{u / t}=c \cdot N_{c}\left(\lambda_{c}\right) \div \gamma_{1} D N_{q} \lambda_{q)} \div 0.5 B \gamma_{2} N_{N} \lambda_{y}$
For Rectangular or Square Footing
$\lambda_{c}=1.0+0.30 \mathrm{~B} / \mathrm{L}$
$\lambda_{q}=1.0$
Egyptian Code of Practice
$\lambda_{\gamma}=1.0-0.30 \mathrm{~B} / \mathrm{L}$
For Circular Footing
$\lambda_{c}=1.30$
$\lambda_{q}=1.00$
Egyptian Code of Practice
$\lambda_{\gamma}=0.70$

T'erzashi's Equation for Different Foundation Shapes

Continuous (Strip) Footing:

$$
\begin{aligned}
& q_{u}=c N_{c}+\gamma_{1} D N_{q}+0.5 B \gamma_{2} N_{\gamma} \\
& q_{\text {urnetet }}=c N_{c}+\gamma_{I} D\left(N_{q}-I\right)+0.5 B \gamma_{2} N_{\gamma}
\end{aligned}
$$

Square Footing:

$$
q_{u \text {-net }}=1.3 c N_{c}+\gamma_{I} D\left(N_{q}-1\right)+0.35 B \gamma_{2} N_{\gamma}
$$

Circular Footing:

$$
q_{u-\text { net }}=1.3 c N_{c}+\gamma_{I} D\left(\mathbb{N}_{q}-I\right)+0.35 B \gamma_{2} N_{\gamma}
$$

$N_{\omega} N_{Q} N_{\gamma}=$ B.C. Factors

Pootings with inclineal loads

()

Inclined Load Factors $\lambda_{c j j} \lambda_{g i j} \lambda_{g j}$

Inclined Loads

$$
\begin{aligned}
\lambda_{c i j}=\lambda_{q j} & =(1.0-\beta / 90)^{2} \\
\lambda_{\gamma i} & =(1.0-\beta / \phi)^{2}
\end{aligned}
$$

Correction Factors, $\lambda_{c i v} \lambda_{q \dot{\nu}}$ and $\lambda_{, i}$ are empirically determined from experiments

Inclined Load Factors:

$q_{u I f}=c N_{c} \lambda_{c}\left(\lambda_{c i}\right) \neq \gamma_{1} D N_{q} \lambda_{q}\left(\lambda_{q i}\right)+0.5 B \gamma_{2} N_{v} \lambda\left(\lambda_{1 i}\right)$

Inclined Load Factors:

$\lambda_{c i}=\lambda_{q i}=(1.0-\beta / 90)^{2}$
$\lambda_{y j}=(1.0-\beta / \phi)^{2}$

Bearing Capacity of Claw $\phi=0$

$$
q_{u l t}=c N_{c} \neq \gamma_{f} D N_{q} \neq 0.50 B \gamma_{2} N_{\gamma}
$$

For Clays:
$N_{c}=5.70, N_{q}=1.0, N_{\gamma}=0.0$

$$
q_{u / t}=5.70 c_{u}+\gamma_{1} D
$$

$$
q_{u l t} \text { net }=5.70 c_{u}
$$

$$
q_{\text {all net }}=1.90 c_{u}
$$

$c_{u}=q_{u} / 2 \quad q_{u}$ Unconfined compressive strength

Bearing Capacity of Sand, $\mathrm{c}_{\mathrm{u}}=00^{8}$

$$
q_{u d t}=c N_{c} \mp \gamma_{1} D N_{q} \mp 0.50 B \gamma_{2} N_{\gamma}
$$

For Sand:

$N_{\omega} N_{q p} N_{\gamma}$ are determined from curve, and $c_{u}=0$, then:

$$
q_{u l t}=\gamma_{t} D N_{q}+0.50 B \gamma_{2} N_{\gamma}
$$

Gross and Net Bearing Capacity

$q_{\text {all }}=\frac{q_{\text {ult }}}{F_{. S}} \quad$ Gross allowable bearing capac
$q_{\text {ult }}=q_{\text {ult net }}+\gamma_{1} D \quad$ Gross ultimate B / C
$q_{\text {all }}=\frac{q_{\text {ult net }}}{F \cdot S .}+\gamma_{1} D \quad$ Gross allowable B / C
$q_{\text {all net }}=\frac{q_{\text {ult net }}}{F^{\prime} \cdot S}$
Net allowable B/C
$\gamma_{I} D$ is the overburden pressure

(a)

(b)

Effect of Water Table on B/C

$q_{\text {ult }}=c N_{c}+v_{1} D N_{q}+0.5 B(1 / 2) N_{\gamma}$

Case (a):

$\gamma_{t} D=\gamma_{b}\left(D_{f}-d\right)+\gamma_{\text {sub }} d$, $\gamma_{2}=\gamma_{\text {sub }}$

Case (b):
$\gamma_{1} D=\gamma_{b} D_{i j}$
$\gamma_{2}=\gamma_{\text {sub }}$

Case (c):
$\gamma_{1} \boldsymbol{D}=\gamma_{b} D_{f j} \quad \gamma_{b}=$ Eulk unit weight
If, $d \leq B$, then $\gamma_{2}=\gamma_{\text {sub }} \quad \gamma_{\text {sub }}=$ submerged Unit weight If, $d>B$, then $\gamma_{2}=\gamma_{b} \quad \gamma_{\text {sub }}=\gamma_{\text {sat }}-\gamma_{\text {water }}$

Setitlement Analiosis

Allowable bearing capacity, as calculated from the settlement analysis, !ssu!!!y controls the soil bearing capacity, especially in clay and silt.

The maximum allowable settlement is set first, then the stress (bearing pressure) that will induce that settlement will be the allowable bearing capacity.

For stratified soils, 2:1 stress distribution is used to determine the stresses at the top of each layer.

Bearius Capacity in Stratifical Depositus

$P=q_{1} A_{1}=q_{1} B_{j} L_{j}$
$P=q_{2} A_{2}=q_{2} B_{2} L_{2}$
q_{1} is the allowable bearing capacity for layer 1
q_{2} is the allowable bearing capacity for layer 2, and so on

The allowable bearing capacity as determined from either the shear strength parameters or the settlement analysis.

Settlement Analiosis

Total Settlement =

Immediate Settlement +
Primary Consolidation Setilement +
Secondary Consolidation Settlement

In Sand:

Total Settlement \approx Immediate settlement
In Siltss Stiff and Medium Clays:
Total Settlement \approx Immediate Settlement +
Primary Consolidation Settlement

Setitlement Analysis

In Soft Claws, Siths and Organic Soils:

Total Settlement $=$ Immediate Settlement + Primary Consolidation Settlement + Secondary Consolidation Settlement

Excample

A footing $1.8 \mathrm{~m} \times 2.5 \mathrm{~m}$ is located at a depth of 1.5 m below the ground surface, in an overconsolidated clay layer: The groundwater level is
$2 m$ below the ground surface. The unconfined compressive strength of that clay is $120 \mathrm{kPa}, \gamma_{\text {bulk }}$ $=18 \mathrm{kN} / \mathrm{m}^{3}$, and $\gamma_{\text {sat }}=20 \mathrm{kN} / \mathrm{m}^{3}$. Determine the net allowable bearing capacity, assuming a factor of safety of 3 .
$q_{u l t}=c N_{c} \lambda_{c}+\gamma_{1} D N_{q} \lambda_{q}+0.5 B \gamma_{2} N_{\gamma} \lambda_{\gamma}$
For Clay: $N_{c}=5.7, N_{q}=1.0, N_{y}=0.0$
For Rectangular Footing:

$$
\begin{aligned}
& \lambda_{c}=1.0+0.30 \mathrm{~B} / \mathrm{L}=1.0+0.30 \times 1.8 / 2.5=1.22 \\
& \lambda_{q}=1.0 \\
& q_{u / t \text { net }}=c N_{c} \lambda_{c}+\gamma_{1} D\left(N_{q}-1\right) \lambda_{q} \\
& q_{u}=120 \mathrm{kPa}, c_{u}=60 \mathrm{kPa}
\end{aligned}
$$

$q_{\text {ulit net }}=60 \times 5.7 \times 1.22=417.20$
 $q_{\text {all net }}=\frac{q_{\text {ntt net }}}{F \cdot S}=\frac{417.2}{3}=139.08 \mathrm{kN} / \mathrm{m}^{2}$
 $q_{\text {all net }}=13.91 \mathrm{t} / \mathrm{m}^{2}=1.39 \mathrm{~kg} / \mathrm{cm}^{2}$

HEPPD

